FIELD PERFORMANCE FOR UP FLOW FILTRATION DEVICE

Noboru Togawa
Robert Pitt
Robert Andoh
Kwabena Osei
Richard Field
Anthony Tafuri

Department of Civil, Construction, and Environmental Engineering University of Alabama, AL 35487, USA
Hydro International, Portland, ME 04102, USA
U.S. Environmental Protection Agency, Edison, NJ, 08837, USA
Overview

- Introduction and Significance of the Research
- History
- Up-Flo® Proto-Type Filter
- Location and Size of the Filter
- Full Scale Up-Flow Filter Components
- Installation of Filter
- Treatment Flow Rate Requirements
- Controlled Flow Test
 - Sediment
 - Methodology
 - Result
- Future Research Subject
Introduction & Significance

- Many types of stormwater controls are available, but most are relatively large or insufficient in their treatment capacity.
- Adequate treatment of runoff requires the removal of many types of pollutants as well as large amounts of debris and floatable materials, over a wide range of flows.
- Traditional downflow filters, which can provide high levels of treatment, can quickly clog, reducing their treatment flow rate and overall treatment capacity. They also usually operate at a low treatment flow rate requiring a large area to treat substantial portions of the runoff from a site.
History

- This stormwater filtration device was developed by engineers at the University of Alabama through a Small Business Innovative Research (SBIR) grant from the U.S. Environmental Protection Agency. The Up-Flow Filter was commercialized by Hydro International as part of this project.

Prototype Testing

- Installed in a 0.9ac parking lot.
- Maximum filtration rate at least 25 gal/min per sq ft of filter area.
Up-Flo ® Proto-Type Filter

- Sump can collect the heavy debris
- Small objects are filtered by screen and media
- During prototype field tests, measured:
 - 68-94% sediment removal
 - 70-90% reduction of typical stormwater pollutants

Illustration from Hydro International
Full Scale Up-Flow Filter Components

- Buoyant trash is captured by flotation in the chamber and retained by the floatables baffle during high-flow bypassing.
- Coarse solids and debris are removed by sedimentation and settle into the sump.
- Dissolved pollutants are removed by sorption and ion-exchange in the media.

Illustration from Hydro International
Current Full-Scale UpFlow Filter Testing

- A 7-foot tall 4-foot diameter standard inlet containing a six module filter unit.
- Installed at the Riverwalk parking lot near the Bama Belle on the Black Warrior River in Tuscaloosa, Alabama.

<table>
<thead>
<tr>
<th>Land Use</th>
<th>Area (ft²)</th>
<th>Area (acre)</th>
<th>% of Land Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parking Area</td>
<td>11,800</td>
<td>0.27</td>
<td>30.5</td>
</tr>
<tr>
<td>Other Paved</td>
<td>1,300</td>
<td>0.03</td>
<td>3.4</td>
</tr>
<tr>
<td>Sidewalks</td>
<td>2,100</td>
<td>0.05</td>
<td>5.4</td>
</tr>
<tr>
<td>Entrance Road</td>
<td>10,990</td>
<td>0.25</td>
<td>28.5</td>
</tr>
<tr>
<td>Green Space</td>
<td>12,400</td>
<td>0.29</td>
<td>32.2</td>
</tr>
<tr>
<td>Total</td>
<td>38,610</td>
<td>0.89</td>
<td>100.0</td>
</tr>
</tbody>
</table>
Installation of the Up Flow Filter
Treatment Flow Rate Requirements

The 100 gal/min filtration capacity of the full-scale filter is expected to treat about 90 percent of the annual flow for a typical rain year, with about 10 percent of the annual flow bypassing filtration.

Treatment flow rate requirements for typical southeastern US conditions (Atlanta, GA), based on continuous long-term simulations (Pitt and Khambhammettu 2006)
Controlled Flow Test for the CPZ Media

- Water flow rate was determined by measuring the time needed to fill a measured volume. This was also used to calibrate the flow sensor.

Graph:

- **Head (in) vs. Flow Rate for CPZ Media (gal/min)**

 - Upper Confidence in 95%
 - Lower Confidence in 95%
 - Actual Data
 - Linear (Actual Data)

 - **Equation:** $y = 6.9449x$
 - **R^2:** 0.6918
Controlled Test Sediments

The test sediment in the stormwater stimulant used a mixture SIL-CO-SIL 250, SIL-CO-SIL 106 (both from U.S. Silica Co.), and coarse and fine concrete sands. The mixture was made by mixing the four components with different ratios to obtain a relatively even particle size distribution representing the complete range from about 20 to 2,000 μm.

Sediment mixture was manually and consistently added to the influent water over the 30 minute test period.
Features of Controlled Tests

- Flow rates of 24, 50, and 100 gallons/minutes were tested.
- Each experiment conducted over 30 minutes.
- River water was used as the “inflow” water.
- Effluent samples collected using a dipper grab sampler every 1 minute.
- During these tests, four different influent sediment concentrations were tested at each flow rate: 50 mg/L, 100 mg/L, 250 mg/L, and 500 mg/L.
Initial Controlled Test Results

- These tests indicated a high level of treatment even for smaller particle sizes.
Results Summary

150 gallon/min Flow Rate and 50 mg/L Concentration

<table>
<thead>
<tr>
<th>Particle Size (μm)</th>
<th>Average Influent Concentration (mg/L)</th>
<th>Average Effluent Concentration (mg/L)</th>
<th>Average Reduction (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 0.45</td>
<td>160</td>
<td>140</td>
<td>13</td>
</tr>
<tr>
<td>0.45 to 3</td>
<td>4.9</td>
<td>1.5</td>
<td>70</td>
</tr>
<tr>
<td>3 to 12</td>
<td>17</td>
<td>3.2</td>
<td>81</td>
</tr>
<tr>
<td>12 to 30</td>
<td>21</td>
<td>3.3</td>
<td>84</td>
</tr>
<tr>
<td>30 to 120</td>
<td>12.4</td>
<td>2.9</td>
<td>80</td>
</tr>
<tr>
<td>120 to 1180</td>
<td>7.7</td>
<td>0.12</td>
<td>99</td>
</tr>
<tr>
<td>> 1180</td>
<td>3.1</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>sum >0.45 μm</td>
<td>65.9</td>
<td>11.1</td>
<td>81</td>
</tr>
</tbody>
</table>
Result Summary (cont.)

150 gallon/min Flow Rate and 500 mg/L Concentration

<table>
<thead>
<tr>
<th>Particle Size (μm)</th>
<th>Average Influent Concentration (mg/L)</th>
<th>Average Effluent Concentration (mg/L)</th>
<th>Average Reduction (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 0.45</td>
<td>170</td>
<td>110</td>
<td>37</td>
</tr>
<tr>
<td>0.45 to 3</td>
<td>43</td>
<td>5.5</td>
<td>87</td>
</tr>
<tr>
<td>3 to 12</td>
<td>160</td>
<td>29</td>
<td>82</td>
</tr>
<tr>
<td>12 to 30</td>
<td>200</td>
<td>44</td>
<td>79</td>
</tr>
<tr>
<td>30 to 120</td>
<td>123</td>
<td>28</td>
<td>79</td>
</tr>
<tr>
<td>120 to 1180</td>
<td>77</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>1180 to 1200</td>
<td>32</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>sum >0.45 μm</td>
<td>635</td>
<td>106</td>
<td>82</td>
</tr>
</tbody>
</table>
Current Full-Scale Tests

- Pollutant removal will be measured during actual storm events
- Rain gage triggers the two auto-sampler at the same time in order to collect influent and effluent water quality
Acknowledgements

Funding provided by:

- Hydro International, Portland, ME
- Graduate Student Research Program, AL Commission on Higher Education
- Small Business Innovative Research program, US EPA
References Describing Earlier Tests

